The Far-IR view of PDRs and star formation

Asunción Fuente Observatorio Astronómico Nacional (OAN-IGN, Spain)

PDR Basic model (Tielens & Hollenbach 1985, ApJ 291, 722)

HST-WFPC2 Wolfgang Brandner (JPL/IPAC), Eva K Grebel (Univ. Washington), You-Hua Chu (Univ. illinois) and NASA

The physical /chemical conditions of a PDR depends on G_0/n and Av H/H_2 transition at Av~2 mag C⁺/C/CO transition at Av~4 mag O/O₂ transition at Av~ 20 mag

FIR is the domain to study PDRs

i. Dust temperature > 50 K. The thermal dust emission peaks at mid-IR wavelengths.

i. The gas is partially atomic. The most important atomic cooling lines, [CII] 158 μ m and [OI] 63 μ m and 145 μ m, occurs in the FIR domain.

i. The most intense molecular lines in PDRs, mid- and high-J CO rotational lines, also at FIR and mid-IR frequencies.

Spitzer 3-180 μm 0.85m 2003

Herschel 60-625 μm 3.5m 2009

Photodissociation Regions (PDRs)

Photon dominated or photodissociation regions (PDRs) are regions where the FUV radiation dominates the energetic balance and chemistry.

- i. The regions close to the O and B stars: HII regions, reflection nebulae, the surface of proto-planetary disks
- ii. The surface of molecular clouds
- iii. Diffuse clouds
- iv. Planetary nebuale
- v. The nucleus of starburst galaxies
- vi. Distant galaxies?

Diffuse clouds

Probing the diffuse medium with Herschel HIFI

Massive star forming regions as background sources for absorption spectroscopy.

The only way to probe gas at low excitation

Accurate measurement of line profiles and opacities -> better measurement of column densities

→ The PRISMAS GTKP of Herschel (*Gerin et al.*)

Why Hydrides?

-Built in the first chemical steps starting from atomic gas

-At the root of the interstellar chemistry

-Trace diffuse gas that cannot be traced by the standard tracer CO.

Fig. 1. Spectra of chlorine species in NGC 6334I: a) $o-H_2^{35}Cl^+ 2_{12}-1_{01}$; b) $o-H_2^{37}Cl^+ 2_{12}-1_{01}$, c) $p-H_2^{35}Cl^+ 1_{11}-0_{00}$, d) $H^{35}Cl^- 1_{-0}$; and e) $H^{37}Cl^- 1_{-0}$. The velocity scale corresponds to the strongest HFS components. Green lines show HFS fits and positions of the HFS components. The $o-H_2^{37}Cl^+$ and $p-H_2^{35}Cl^+$ lines are blended with dimethyl ether emission (light-blue lines in panels **b**) and c).

 $HC1^{+}, H_{2}C1^{+}$

Formation route:

 $\mathrm{Cl}^+ + \mathrm{H}_2 \rightarrow \mathrm{HCl}^+ + \mathrm{H}.$

 $\mathrm{HCl^{+}} + \mathrm{H_{2}} \rightarrow \mathrm{H_{2}Cl^{+}} + \mathrm{H}.$

[HCl]/[H₂Cl⁺]~1 -10 in agreement with PDR chemical models

HCl and H_2Cl^+ column densities in excess of model predictions

De Luca et al., 2012, ApJ 751, L37; Lis et al. 2010, A&A 521, L9

HF, CH^+ , SH^+ , OH^+ , H_2O^+ toward G10.6-0.4

 OH^+ and H_2O^+ consistent with predictions of gas phase chemical models.

 $N(OH^+)/N(H_2O^+) < 4 \rightarrow Only$ a small fraction of the gas (<10%) is in molecular form.

The high abundances of CH⁺ and SH⁺ are only understood in the context of turbulent models.

Gerin et al. 2010, A&A 518, L110; Falgarone et al., SF2A 2010

Herschel HIFI: using HF to trace H₂

$F + H_2 \rightarrow HF + F + 1.4 eV$

HF is present as soon as H, is present, even in clouds with no detectable CO or H,O.

HF 1232 GHz p-H₂O 1113 GHz

Neufeld et al. 2010, Sonnentrucker et al. 2010 & 2012 subm., Monje et al. 2011

Star forming regions (gas)

PDR Basic model (Tielens & Hollenbach 1985, ApJ 291, 722)

Partially atomic layer

OH, CH, OH⁺, CH⁺, SH⁺, HF, H₂Cl⁺, HCl⁺

Orion Bar: CH⁺, SH⁺

Transition		Frequency	$E_{\rm up}$	A	Instrument/band	Beam-size	$\eta_{ m mb}$
_		(MITZ)	(K)	(8)		0	
CH+ 1-0		835 137.5	40.1	6.36×10^{-3}	HIFI, band 3a	26.5	0.75
CH+ 2-1		1669281.3	120.2	6.10×10^{-2}	HIFI, band 6b	15.0	0.72
CH ⁺ 3–2		2 501 440.5	240.2	2.20×10^{-1}	PACS	9.4 ¹	
CH+ 4-3		3 330 629.7	400.1	5.38×10^{-1}	PACS	9.4 ¹	
CH ⁺ 5-4		4155872.0	599.5	1.07	PACS	9.4 ¹	
CH ⁺ 6–5		4976201.4	838.3	1.86	PACS	9.4 ¹	
¹³ CH ⁺ 1-0		830216.1	39.9	5.83×10^{-3}	HIFI, band 3a	26.5	0.75
$SH^{+} N_{J} = 1_{2}$	$-0_1, F = 3/2 - 1/2$	526 038.7	25.3	7.99×10^{-4}	HIFI, band 1a	44.2	0.76
$SH^{+} N_{J} = 1_{2}$	$-0_1, F = 5/2 - 3/2$	526 047.9	25.3	9.59×10^{-4}	HIFI, band 1a	44.2	0.76
$SH^{+} N_{J} = 1_{2}$	$-0_1, F = 3/2 - 3/2$	526 124.9	25.3	1.60×10^{-4}	HIFI, band 1a	44.2	0.76
$SH^{+} N_{J} = 1_{1}$	$-0_1, F = 3/2 - 1/2$	683 336.1	32.8	2.90×10^{-4}	HIFI, band 2a	33.2	0.75
$SH^+ N_J = 1_1$	$-0_1, F = 1/2 - 1/2$	683 362.0	32.8	1.16×10^{-3}	HIFI, band 2a	33.2	0.75
$SH^{+} N_{J} = 1_{1}$	$-0_1, F = 3/2 - 3/2$	683 422.3	32.8	1.45×10^{-3}	HIFI, band 2a	33.2	0.75
$SH^+ N_J = 1_1$	$-0_1, F = 1/2 - 3/2$	683 448.2	32.8	5.79×10^{-4}	HIFI, band 2a	33.2	0.75
CF ⁺ 5–4		512 846.5	73.8	8.21×10^{-4}	HIFI, band 1a	44.2	0.76
CF ⁺ 6–5		615 365.6	103.4	1.44×10^{-3}	HIFI, band 1b	44.2	0.76
¹³ CF ⁺ 5–4		488 664.3	70.0	7.10×10^{-4}	HIFI, band 1a	44.2	0.76

Nagy, Z., van der Tak, F., Ossenkopf, V., et al., 2013, A&A 550, 96

CH⁺, SH⁺ (Meudon PDR code + excitation model)

 $N(CH^+) = 9 \times 10^{14} \text{ cm}^{-2}$, $n(H_2) = 10^5 \text{ cm}^{-3}$, $n(e^-) = 10 \text{ cm}^{-3}$, $T_{kin} = 500 \text{ K}$. The blue symbols correspond to a model with excitation via collisions with H_2 , the green symbols to a model with excitation via H_2

and electron collisions

Collisions with e⁻, H and H₂ Reactive collisions IR pumping Formation pumping

CH⁺ and SH⁺ are formed in the warm surface (Av~1.5 mag) where the gas is partially atomic. Their column densities are well predicted and CH⁺ is mainly formed by reactions with vibrational excited H₂ (Agúndez et al. 2010, ApJ 713, 662; Zanchet et al. 2014, AJ 146, 125) WHY DIFFERENT LINEWIDTHS?

Nagy, Z., van der Tak, F., Ossenkopf, V., et al., 2013, A&A 550, 96

Orion Bar: CH⁺, SH⁺

The line-widths of the CH^+ 1-0 and 2-1 lines are similar to C^+ and HF, but significantly broader than SH^+ , CF^+ and CO^+ .

Nagy, Z., van der Tak, F., Ossenkopf, V., et al., 2013, A&A 550, 96

The ALMA view of the Orion Bar

Figure 4. ALMA-ACA observations of several molecules, including the reactive ions SH⁺ and HOC⁺ and complementary images of the Bar (Goicoechea et al. 2017). All images have been rotated to bring the FUV illuminating direction in the horizontal direction (from the right). The upper row shows images of a) the H₂ v=1-0 S(1) line at $2.12 \mu m$, delineating the dissociation front (DF) (Walmsley et al. 2000); b) the Spitzer 8 μm emission produced mainly by PAHs, and c) the fluorescent O I $1.32 \mu m$ line arising from the H II/PDR boundary (Walmsley et al. 2000).

Goicoechea. J.R., et al., 2017, A&A 601, L9

The ALMA view of the Orion Bar

Table D.1. Timescales, in hours, for chemical destruction by reactive collisions with H2, H, e⁻ and by FUV photodissociation.

Ion	$\tau(H_2)^a$	$\tau(\mathrm{H})^{a}$	$ au(e^{-})^{a}$	τ (photodiss.) ^b
CH+	$4.6 \mathrm{h} (10^5 \mathrm{cm}^{-3}/\mathrm{n_H}) f_{\mathrm{H_2}}^{-1}$	$3.7 \mathrm{h} (10^{5} \mathrm{cm}^{-3}/\mathrm{n_{H}}) (1 - f_{\mathrm{H}_{2}})^{-1}$	$185 \mathrm{h} (10^{5} \mathrm{cm}^{-3}/\mathrm{n_{H}}) (10^{-4}/x_{e})$	$84.2 \mathrm{h} e^{+2.94 A_V}$
$\tau_{\rm D} \approx 4 {\rm h}^c$	-			
HOC+	$14.6 \mathrm{h} (10^{5} \mathrm{cm}^{-3}/\mathrm{n_{H}}) f_{\mathrm{H}_{2}}^{-1}$	—	$252 h (10^{5} cm^{-3}/n_{\rm H}) (10^{-4}/x_{e})$	$5144 h e^{+3.32 A_V}$
$\tau_{\rm D} \approx 26 {\rm h}^c$	-			
SH ⁺	_	$25 \mathrm{h} (10^{9} \mathrm{cm}^{-3}/\mathrm{n_{H}}) (1 - f_{\mathrm{H}_{2}})^{-1}$	$111 h (10^{5} cm^{-3}/n_{\rm H}) (10^{-4}/x_{e})$	$111 \mathrm{h} e^{+1.66 A_V}$
$\tau_{\rm D}\approx 46{\rm h}^c$				
SO ⁺			$139 h (10^{5} cm^{-3}/n_{\rm H}) (10^{-4}/x_{e})$	$27.8 \mathrm{h} e^{+1.70 A_V}$
$\tau_{\rm D} \approx 73 {\rm h}^c$				

Notes. "Assuming $T_k = T_e = 300$ K. "For a FUV-radiation field of $\chi = 10^4$." Total destruction timescale (τ_D) at $A_V = 1$ assuming $n_H = 10^5$ cm⁻³ and $f_{H_2} = 0.5$. For CH⁺ (HOC⁺), τ_D is shorter (longer) than the timescale for non-reactive collisions in their low-lying rotational levels (see Table D.2.).

Goicoechea. J.R., et al., 2017, A&A 601, L9

WISH: Constraints on low-mass to high-mass protostars

	NGC 1333 2A	NGC 1333 4A	NGC 1333 4B	Ser SMM 1	L 1489	NGC 7129 FIR2	W3 IRS5	NGC 6334 I	NGC 6334 I(N)	AFGL 2591	S 140	NGC 7538 IRS1
CH+	N blue	M blue	M blue	M blue		M red	M pcyg	M red	N red	M pcyg	N blue	M ipcyg
OH⁺		M blue	M blue	M blue		M red	M pcyg	M b+r	M red	M pcyg	M red	M red
H₂O⁺				M blue			M blue			M blue		N blue
H₃O+							M red	N blue	M red	M red	N red	
SH+							M blue					
HCO+	M blue	M blue	M blue	M blue	M blue	M red	M red	M blue	M red	M blue	M red	M blue
C+	M blue	M blue		M blue			M pcyg			M pcyg	M blue	
СН	N ipcyg	N ipcyg	N ipcyg	M+N ipcyg		M red	N red	N ipcyg	N red	N red	N red	N blue

Benz., A., et al. 2016, A&A 590, 105

WISH: Constraints on low-mass to high-mass protostars

Fig. 10. Cartoons of three scenarios described in the text for the origin of the observed CH^+ , OH^+ , H_2O^+ , and C^+ absorptions. A: Irradiated outflow walls with slow shocks entraining the outer layers of the walls; B: disk wind irradiated by protostellar FUV; C: fast dissociative shocks irradiated by protostellar FUV. Low mass stars: a high FUV luminosity $(1.5 L_{sun})$ is required to explain observations.

High mass stars: The estimated UV flux is lower than that predicted at the distance of the Herschel beam. Extinction by a circumstellar disk?

Benz., A., et al. 2016, A&A 590, 105

Star forming regions (dust)

Monoceros R2 (HOBYS, PI: F. Motte)

PACS+SPIRE

70 μm (blue) 160 μm (green) 250 μm (red)

Monoceros R2

Didelon, P,, Motte, F, Tremblin, P. et al. A&A, submitted

Monoceros R2

Table 3: Properties of the neutral envelopes surrounding the four H II regions of Mon R2

Region name	R _{Infall}	Rout	$\rho(r) \propto r$	q	Infall	N _{H2} ^{Max}	R _{HM}	$\langle \rho_{\rm obs} \rangle$	$\rho_{\rm env}(1 {\rm pc})$	$\rho_{\rm env}(R_{\rm HII})$
	[pc]	[pc]	$q_{ m in}$	$q_{\rm out}$	age [Myr]	[cm ⁻²]	[pc]	[cm ⁻³]	[cm ⁻³]	[cm ⁻³]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	())	(10)	(11)
control	3 + 1	25+5	- 85 + 35	-27	5-15	2×10^{23}	0.35	1.4×10^{5}	2000 ± 300	1.5×10^{5}
central	.J ± .1	$2.3 \pm .3$	$05 \pm .55$	-2.1	.5 - 1.5	$2. \times 10$	0.55	1.4 × 10	2000 ± 500	1.3 × 10
western	.5 ± .1	3. ± 1.	$-1.5 \pm .15$	-1.8	.8-2.5	$16. \times 10^{21}$	0.4	$9. \times 10^{3}$	350 ± 50	12000
eastern	.9 ± .2	$2.5 \pm 1.$	$4 \pm .2$	-2.3	1.4-4.4	$7. \times 10^{21}$	0.9	$1.6. \times 10^{3}$	450 ± 50	1200
northern	> 2	$2.5 \pm .5$	$-1.45 \pm .15$	-	> 310.	$3. \times 10^{21}$	1.5	300.	115 ± 30	150

Didelon, P, Motte, F, Tremblin, P. et al. 2015, A&A 584, 4

Monoceros R2

Table 4: Estimations of expansion time for the four H II regions of Mon R2

	Analytica	l calculat	tions and sim	ulations wit	hout gravity	Sim	gravity	Adopted	
	Constant	density	Decreasing density			Constan	t density	Dec.density	expansion
Region	$\langle \rho_{\rm initial} \rangle$	t _{Spitzer}	$ ho_{c}$	t_{exp} (calc)	t_{exp} (simu.)	$\langle \rho_{\rm initial} \rangle_{\rm Max}$	t_{exp} (simu)	t_{exp} (simu)	time
	[cm ⁻³]	[kyr]	[cm ⁻³]	[kyr]	[kyr]	[cm ⁻³]	[kyr]	[kyr]	[kyr]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
central	2×10^{5}	54	2×10^{6}	58	53	1.7×10^{5}	133	-	90 ± 40
western	2.4×10^{4}	92	1×10^{6}	108	98	1.7×10^{4}	215	-	150 ± 50
eastern	1.5×10^{3}	23	4×10^{3}	24	23	8×10^{3}	170	24	25 ± 5
northern	3×10^{2}	310	2.5×10^{5}	370	355	5×10^{3}	3700.	370	350 ± 50

Didelon, P, Motte, F, Tremblin, P. et al. 2015 A&A, 584, 4

The global dust SED

DustEM

DHGL (Diffuse interstellar medium at High Galactic Latitude)

Compiègne M., Verstraete L., Jones A. et al. 2011, A&A 525, 103

The global dust SED

Table 2. DHGL dust model abundances and size distribution parameters (see §4.2). Y is the mass abundance per hydrogen for each dust component. $f_{M_{tot}}$ is the dust component mass as a fraction of the total dust mass.

	σ	a_0			Y	$f_{M_{tot}}$
		(nm)			(M/M_H)	
PAH	0.1	0.64			7.8 10 ⁻⁴	7.7%
SamC	0.35	2.0			1.65 10 ⁻⁴	1.6%
	α	a_{\min}	a_c, a_t	γ		
	α	a _{min} (nm)	a_c, a_t (nm)	γ		
LamC	α -2.8	a_{\min} (<i>nm</i>) 4.0	a_c, a_t (nm) 150	γ 2.0	1.45 10-3	14.2%
LamC aSil	α -2.8 -3.4	a _{min} (<i>nm</i>) 4.0 4.0	a_c, a_t (<i>nm</i>) 150 200	γ 2.0 2.0	1.45 10 ⁻³ 7.8 10 ⁻³	14.2% 76.5%
LamC aSil	α -2.8 -3.4	a _{min} (<i>nm</i>) 4.0 4.0	a _c , a _t (nm) 150 200	γ 2.0 2.0 TOTAL	1.45 10 ⁻³ 7.8 10 ⁻³ 10.2 10 ⁻³	14.2% 76.5%

DHGL (Diffuse interstellar medium at High Galactic Latitude)

Compiègne M., Verstraete L., Jones A. et al. 2011, A&A 525, 103

Dust evolution in the Orion Bar

Fig. 1. Orion bar maps observed by IRAC, PACS and SPIRE instruments. The red circle bottom right stands for the FWHM for each channel, and the black star shows the location of the illuminating source. The saturated pixels are indicated in black.

Arab, H., Abergel, A., Habart, E., 2012, A&A 541, 19

Dust evolution in the Orion Bar (DustEM+DHGL)

Arab, H., Abergel, A., Habart, E., 2012, A&A 541, 19

Dust evolution in the Orion Bar (DustEM+PAH depleted model)

	$Y_{\rm PAH} (M/M_H)$	Y _{SamC}	Y _{LamC}	Y _{aSil}	€ _{FIR}	l _{PDR} (pc)
Diffuse ISM model (Fig. 9)	7.8×10^{-4}	1.65×10^{-4}	1.45×10^{-3}	7.8×10^{-3}	$\epsilon_{\rm FIR}^0(\lambda)^a$	0.45
PAH depleted model (Fig. 10)	1.1×10^{-4}	$1.65 imes 10^{-4}$	1.45×10^{-3}	7.8×10^{-3}	$\epsilon_{\rm FIR}^0(\lambda)^{a}$	0.45
PAH depleted model + ϵ_{BG} enhancement (Fig. 11)	2.36×10^{-4}	1.65×10^{-4}	1.45×10^{-3}	7.8×10^{-3}	$2 \times \epsilon_{\rm FIR}^0(\lambda)^a$	0.25

Notes. ^(a) $\epsilon_{FIR}^0(\lambda)$ is the FIR emissivity presented in Fig.A1 from Complete et al. (2011).

Arab, H., Abergel, A., Habart, E., 2012, A&A 541, 19

Bimodal dust distribution in IC 434

Ochsendorf & Tielens, 2015, A&A 576, 2

Bimodal dust distribution in IC 434

Ochsendorf & Tielens, 2015, A&A 576, 2

Towards Xgal

[CII] in the Orion Molecular Cloud

Orion Molecular Cloud-1 (OMC1)

with Herschel (dust)

8' x 12' (0.9pc x 1.4pc) (OT1_jgoicoec_4)

13CO *J*=2-1, IRAM-30m @ 11" (Berné et al. 2014)

70 microns (blue), 160 um (green) and 2 1.3 x 2.4 degrees Herschel/ESA & P. Av

[CII]/L_{FIR} in Xgal

Graciá-Carpio+2011, ApJ 728,7

[CII] in Orion

Figure 1. (Left): Composite image with the H41 α (green), [C II] 158 μ m (blue) and CO 2-1 (red) integrated intensities. The position of the main sources in Orion are shown. (Right): *Herschel*/HIFI map of the continuum-subtracted [C II] 158 μ m line (integrated intensity from 0 to 17 km s⁻¹).

Goicoechea, Teyssier, Etxaluze et al., 2015, ApJ 812, 75

[CII] in Orion

- Non-local, non-LTE grid:
 - $-\tau = \tau_{[CII]} + \tau_{dust}$ (160µm)
 - FIR pumping (strong background)
 - Line-trapping and broadening

Extended OMC1 face:

 $T_{ex} > 110 \text{ K}$

 \rightarrow n_H > 5000 cm⁻³

Dense PDRs (Bar, Trapezium, 85 %

 $T_{ex} > 300 \text{ K} \rightarrow n_{H} > 10^5 \text{ cm}^{-3}$

Goicoechea, Teyssier, Etxaluze et al., 2015, ApJ 815, 75

[CII]/L_{FIR} in Orion

Goicoechea, Teyssier, Etxaluze, 2015, ApJ 815, 75

[CII]/L_{FIR} in Orion

Goicoechea, Teyssier, Etxaluze et al., 2015, ApJ 815, 75

[CII]/L_{FIR} in Xgal vs Orion

Summarizing...

Spitzer and Herschel have provided a first insight into the physics and chemistry of the gas and dust in PDRs. Current models offers a reasonable overall picture of PDRs but present some deficiencies for the external layers Av < 2 mag.

i) Reactive ions as a probe of external layers of PDRs.

ii) Chemistry + excitation need to be coupled in the warmest layers of the PDR where very reactive ions survive.

iii) Dust composition is essential for chemical models.

iv) Galactic PDRs as Xgal patterns.