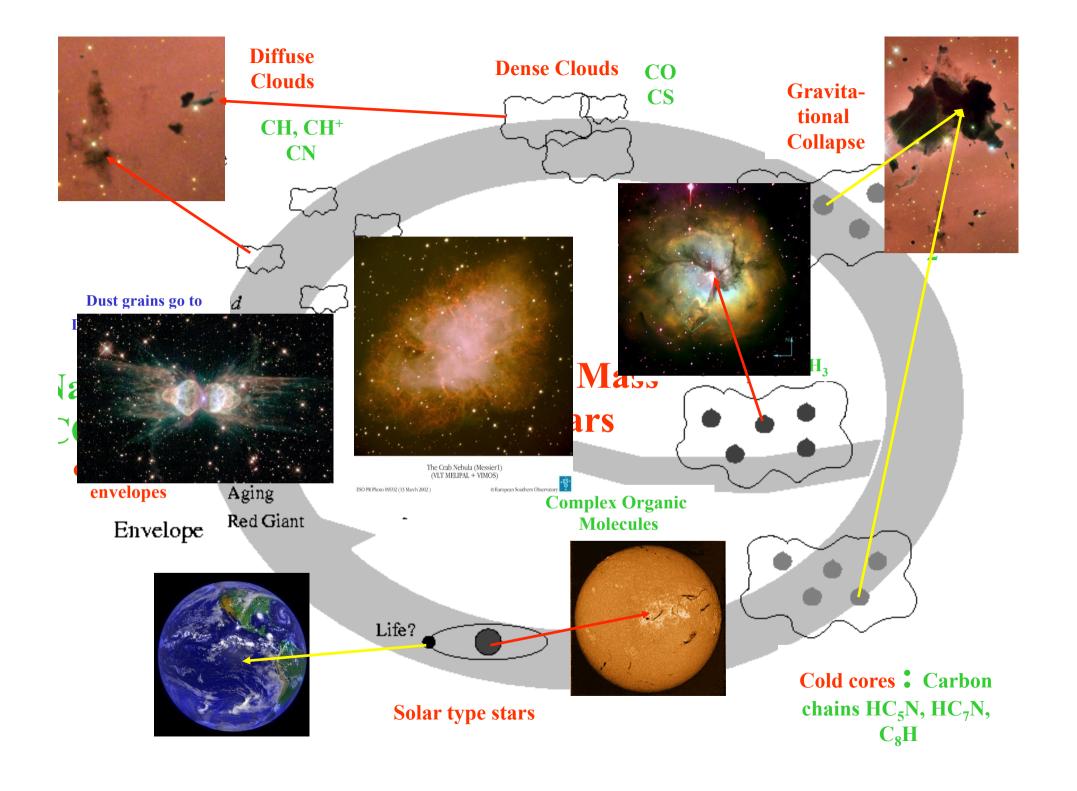

Molecular Astrophysics: AN INTRODUCTION TO THE CHEMISTRY OF THE INTERSTELLAR MEDIA Reactions in Astrochemistry


José Cernicharo
Instituto de Física Fundamental (IFF-CSIC). Group of Molecular Astrophysics
jose.cernicharo@csic.es

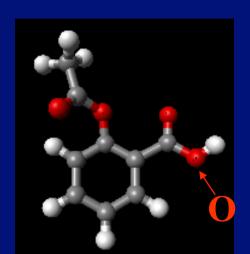
The molecular Universe

- ISM molecular clouds are dusty, icy and chemically rich.
- More than ~190 (gas-phase) molecular species have been detected.
- The number of C, N, O, S ... atoms represents < 0.1% of atoms.
- Molecules are probes of the physical conditions: T, n, Δv, (B, age, e⁻...)

Los seres humanos inhalan cerca de ciento cincuenta mil trillones de moléculas cada 5-6 segundos

150,000.000,000.000,000.000,000=150,000e18!

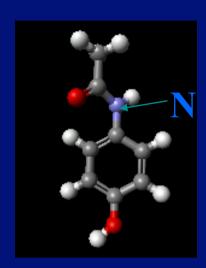
De las cuales 21% son moléculas de oxígeno 77% son moléculas de nitrógeno 2% (vapor de agua y otras)

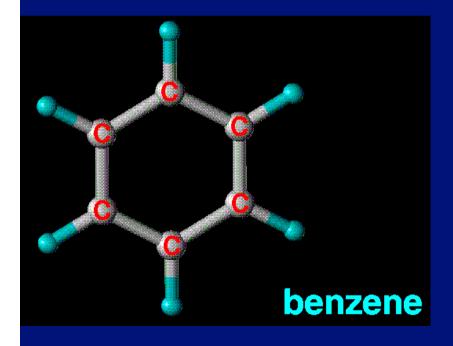


Glucosa
$$(C_6H_{12}O_6) + O_2 = CO_2 + H_2O$$

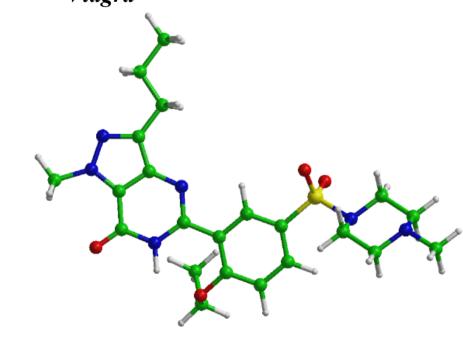

Un motor de explosión realiza un proceso similar :

Carburante ($2 C_8 H_{18}$ por ejemplo) + $25 O_2 = 16 CO_2 + 18 H_2O$


Aspirina

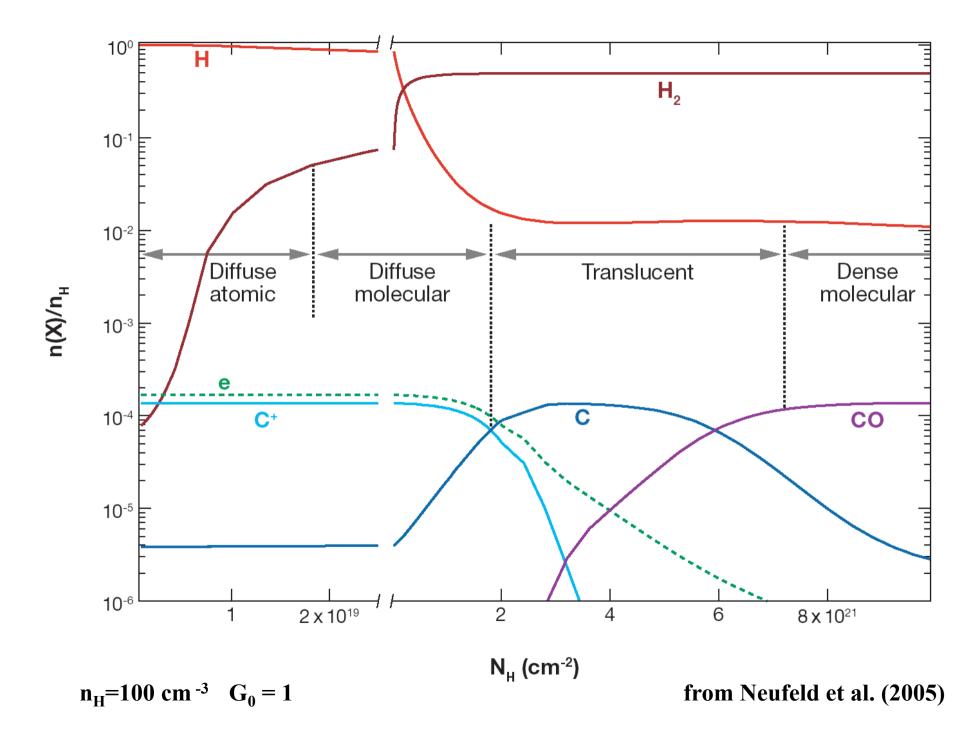


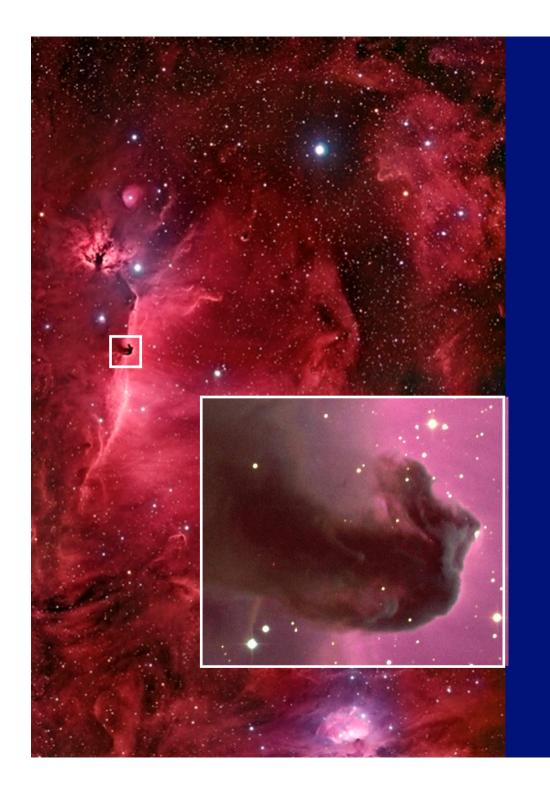
Ibuprofeno



Paracetamol

Viagra


CHEMICAL COMPLEXITY IN THE INTERSTELLAR MEDIUM


• The structure of molecular clouds is quite complex with strong gradients (T, n...) between different regions of the same cloud.

In the external layers the visual absorption increases quickly and protects the inner regions against the UV interstellar field.

There are not precise laws given the density and the temperature as a function of the radius.

The clouds are very inhomogeneous and the physical conditions could change strongly.

Understanding and modelling the physical and chemical properties of molecular clouds is difficult...

CHEMISTRY OF THE INTERSTELLAR MEDIUM HISTORY

- * 1926 Eddington proposed that molecules could be formed in dark clouds (only atomic species had been observed).
- * In 1930-1940 three molecules were observed through optical observations of slightly reddened stars : CN, CH and CH $^+$. The observed clouds are not protected against the UV galactic field ($T_{ex} \sim 3$ K).
- Between 1960 and 1970 a new branch of Astrophysics was born: Astrochemistry. Several molecular species were detected using radioastronomical techniques: OH, NH₃ and H₂CO. These molecules were detected in dense, heavily obscured, molecular clouds.

- * In the 1970-1980 period several observations in the UV from space telescopes showed the presence of H_2 , HD, OH and CO in regions of low visual absorption.
- * In the same period a large number of molecular species were detected through radioastronomical observations: CH₃OH, SiO, CS, HCN, HNC, SiS, CN, HCO⁺, N₂H⁺, ...
- * Those observations were carried out with the Kitt Peak, Bell Labs and Onsala radiotelescopes. Although the number of detected species was large and several line surveys were performed, it appeared that the chemical complexity had reached its maximum. During near 10 years the number of detected species was rather stable compared with the large number of molecules initially discovered.

- * In 1985 the 30-m telescope (Pico Veleta, Spain) started scientific operations. Nobeyama radiotelescope was also in operation at the same time.
- * In a few years the complexity of the interstellar medium was increasing after the detection of almost 30 new molecular species with these instruments.
- * Species like C₅H, C₆H, C₇H, C₈H, C₅N, CCS, CCCS, SiC, SiC₃, SiC₄, SiCN, metals (NaCl, KCl, AlCl, AlF, MgNC,) CH₃NC, HCCN, CP, H₂C₃, H₂C₄, c-C₃H, H₂CCN,....) and a huge variety of isotopic species have been detected using radioastronomical techniques in the last 15 years

(40 species first detected by our group)

- * In 1984 Puget and Léger (among others) proposed the presence of PAHs to explain the UIBs and the IRAS emission at 12 μm in the ISM.
- * ISO has shown that PAHs are detected in almost all lines of sight and also in external galaxies.
- * Infrared observations with ISO have shown the presence of polyynes (C_nH_2) and of benzene (C_6H_6) in proto-planetary nebula.
- * >2006: Detection of molecular anions: C_6H^- , C_8H^- , C_3N^- , CN^-
- * May 2009: Herschel is launched (FIR & smm)
 New molecules detected in 2010: H₂O⁺, OH⁺, H₂Cl⁺, HCl⁺...
- * ~2012 ALMA (the largest radio observatory ever built)

How are these molecules formed?

 H_2 is the most abundant molecule but H_2 gas-phase formation is extremely improbable.

How it is possible to have a such important chemical complexity when the formation of H_2 is not obvious at all?

Can we be sure that our chemical models are correct when most reactions rates are unknown?

What can we say about the large molecules, e.g., PAHs, that are present across the galaxy under all physical conditions?

Some notation...

BIMOLECULAR REACTIONS (ISM)

$$A + B \xrightarrow{k} M + N$$

A,B = neutrals, ions (atoms, molecules, e)

M = molecule

N = molecule, atom or photon

$$\mathbf{M} + \mathbf{h} \mathbf{v} \xrightarrow{\beta} \dots$$

Which is the abundance (or density) of molecule "M"?

$$n(A) = density \ of "A" molecules$$
 $[n(A)] = (molecules) \ cm^{-3}$

$$[n(A)] = (molecules) cm^{-3}$$

$$k = \text{``rate coefficient''} \quad [k] = cm^{+3} s^{-1} \sim \sigma(cm^2) \cdot v(cm s^{-1})$$

$$\beta$$
 = "photodissociation rate"

$$[\beta] = (molecules) s^{-1}$$

typical $\beta \approx 10^{-10} \, \text{s}^{-1} \rightarrow \text{molecule lifetime}$ in diffuse $ISM = 1/\beta \approx 300 \text{ yr!}$

BIMOLECULAR REACTIONS (ISM)

$$A + B \xrightarrow{k} M + N$$

A,B = neutrals, ions,(atoms, molecules, e⁻)

M = molecule

N = molecule, atom or photon

$$\mathbf{M} + \mathbf{h} \mathbf{v} \xrightarrow{\beta} \dots$$

Formation rate of $M = k n(A) n(B) [cm^{-3} s^{-1}]$

Destruction rate of $M = \beta n(M)$ [cm⁻³ s⁻¹]

Which is the abundance (or density) of M molecule?

d/dt n(M) = Formation - Destruction = k <math>n(A) $n(B) - \beta n(M)$

$$A + B \xrightarrow{k} M + N$$

$$\mathbf{M} + \mathbf{h} \mathbf{v} \stackrel{\beta}{\rightarrow} \dots$$

d/dt n(M) = Formation - Destruction = k <math>n(A) $n(B) - \beta n(M)$

Steady state
$$\rightarrow d/dt \ n(M) = 0 \rightarrow n(M) = k \ n(A)n(B) / \beta$$

$$k = k (T)$$
?? β ??

- k and \beta can be determined from quantum calculations and / or through sophisticated laboratory measurements

$$k(T)=A(T) \exp(-E_a/kT)$$
 "Arrhenius law"

General bibliography on chemical processes in the ISM (Books)

* "The Physics and Chemistry of the ISM"

A.G.G. Tielens, Cambridge University Press, 2005.

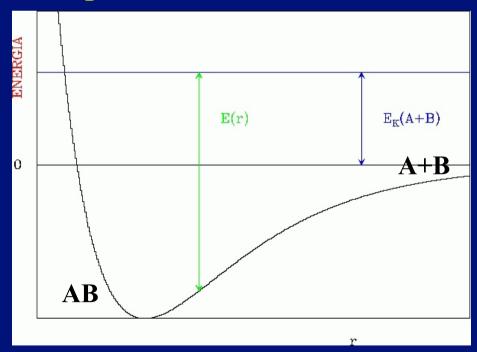
* "Interstellar Chemistry"

W.W. Duley and D.A. Williams, Academic Press, 1984.

* "Physical Processes in the Interstellar Medium"

L. Spitzer, Jr., New York: Wiley, 1978.

THE NATURE OF THE PROBLEM OF INTERSTELLAR CHEMISTRY


- 1) Low Temperatures
- 2) Low Volume Density
- 3) The Formation of H₂ in gas phase not possible !!!

In all chemical processes the interaction between two species (atoms or molecules) produces an activated complex that has to loss energy in a very short time period, often similar to the vibration time of the nuclei that form the molecule. There are many ways for the activated complex to loss energy. But, while in terrestrial laboratories we can use catalysers or a third body, in space three body collisions are very uncommon and the only possible catalysers are dust grain surfaces.

Let us consider the reaction

$$A + B \rightarrow AB^* (k_1)$$

It may happen that AB* interacts with a third body (catalyser) to remove the energy excess produced in the formation of the activated complex. However, also AB* could dissociate into the initial particles A and B

$$AB^* + M \rightarrow AB + M \quad (k_2)$$

 $AB^* \rightarrow A + B \quad (k_3)$

The formation rate of the molecule AB, assuming that the activated complex reaches an equilibrium between formation and destruction is given by

$$dn(AB)/dt = n(AB^*) \times n(M) k_2$$

$$dn(AB^*)/dt = n(A) \times n(B) \times k_1 - n(AB^*) \times n(M) \times k_2 - n(AB^*) \times k_3$$

$$dn(AB^*)/dt = 0$$

$$n(A) n(B) k_1$$
 $n(AB^*) = \frac{(k_3 + k_2 n(M))}{(k_3 + k_2 n(M))}$

and

$$dn(AB)/dt = \frac{k_1 k_2 n(A) n(B) n(M)}{k_3 + k_2 n(M)}$$

If A, B y M are neutral species then $k_1 \approx 10^{-11}$ cm³s⁻¹ and $k_2 \approx 10^{-10}$ cm³s⁻¹, but $k_3 \cdot 10^{+11}$ s⁻¹!!, and

 $dn(AB)/dt \approx 10^{-32} n(A) n(B) n(M) cm^{-3}s^{-1}$

The best case in the ISM occurs for A=B=M= H

$$H + H + H \Leftrightarrow H_2 + H$$

and we will see that formation times are very long...

NOTE: For other molecules the optimal case is when: A=H, M=H and B \in (C,N,O), i.e., n(B) \approx 10⁻⁴ n(H) and

 $dn(BH)/dt \approx 10^{-36} n^2(H) n(B) cm^{-3} s^{-1} B \in (C,N,O)$ (even worse...)

EXAMPLE: The simplest trimolecular reaction

Let us consider an atomic cloud without dust grains and without radiation field. For t=0 the density of atomic hydrogen is n and that of molecular hydrogen is 0. The formation of H_2 occurs through the reaction

$$\mathbf{H} + \mathbf{H} + \mathbf{H} = \mathbf{H}_2 + \mathbf{H}$$

with a k rate of 10^{-32} cm⁶ s⁻¹

The formation rate of
$$H_2$$
 is given by ("molecular fraction")
$$\frac{dn(H_2)}{dt} = k n^3_H(t); \qquad f(t) = \frac{2 n_{H2}(t)}{n_H(t) + 2 n_{H2}(t)} = \frac{n_{H2}(t)}{n_H(t)}$$

$$\frac{df(t)}{dt} = k n^{2} (1-f(t))^{3}$$
 Time to reach f=0.5 ??

(Earth at sea level density~10¹⁹ cm⁻³) (ultra-high vacuum chamber density~10⁵ cm⁻³)

$$f(t_0)=0.5$$

$$n(cm^{-3})$$
 ... 10^{5} 10^{10} 10^{12} 10^{15} 10^{16} 10^{18} t_0 (years) ... $6\,10^{14}$ $6\,10^4$ 6 $6\,10^{-6}$ $6\,10^{-8}$ $6\,10^{-10}$ $(600\,s)$ $(6s)$ $(0.0006s)$

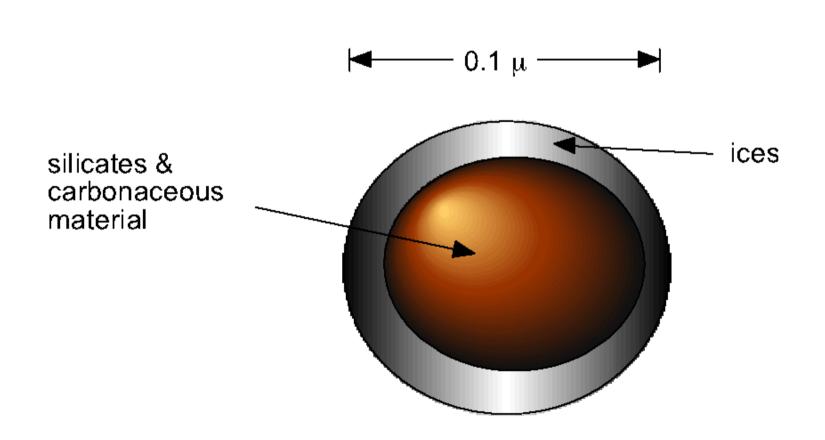
3-body reactions are only efficient for densities larger than 10¹⁰ cm⁻³. Even in this case, the density is not enough taken into account the dynamical time scale of evolution of the object.

$$H + H + H = H_2 + H$$
 DOES NOT WORK!

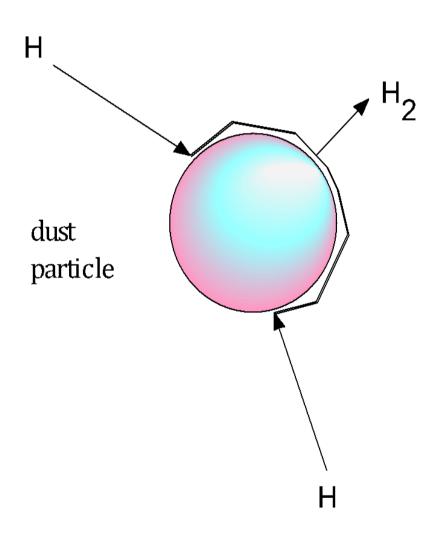
BUT MOLECULES HAVE BEEN DETECTED, in particular H₂, THUS, WE HAVE TO FIND OTHER MECHANISMS

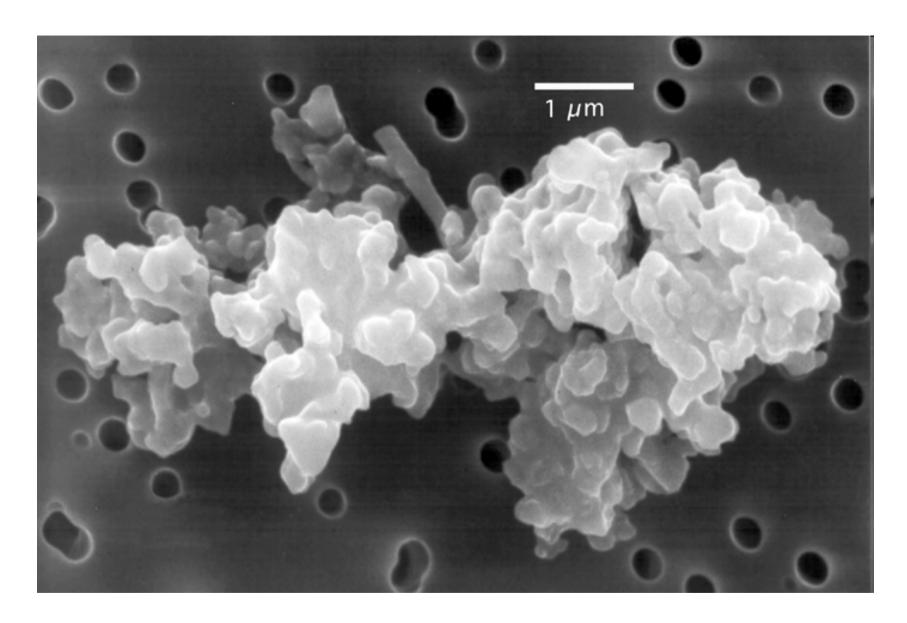
TO FORM MOLECULES IN THE SPACE

MOLECULE FORMATION ON INTERSTELLAR GRAINS


W. D. WATSON AND E. E. SALPETER

THE ASTROPHYSICAL JOURNAL, 174:321-340, 1972 June 1

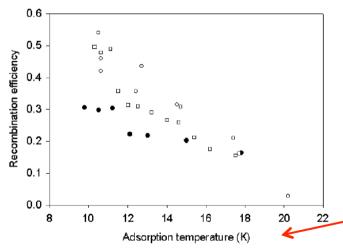

Adsorption binding energies D depend greatly on the particular adsorbed particle, and on the chemical nature and surface condition of the dust grain. For saturated molecules on an inert surface only physical adsorption (van der Waals interaction) occurs. The corresponding adsorption energy D for nonpolar molecules depends on the polarizability of the molecule but seems to be similar for likely nonmetallic grain materials, such as ice, graphite, and silicates (cf. Williams 1968; Dormant and Adamson 1968; Augason 1970; HS1). Based on this available data and extrapolation according to the polarizability, the lowest possible values (disregarding the special case of H_2) are expected to be D/k (k = Boltzmann constant) \sim (800°–1200° K). These values are appropriate for particles of modest polarizability such as CH_4 (as well as for radicals such as C, N, O, CO, etc., if these are not bound by chemical forces). For small polar molecules (e.g., H_2O , NH_3 , H_2CO) on a regular inert surface D/k may be \sim 1000°–2000° K.


Binding energies in pure molecular crystals are slightly larger than the adsorption energies quoted above (methane $\sim 1100^{\circ}$ K, ammonia $\sim 3300^{\circ}$ K, water $\sim 6200^{\circ}$ K). If a molecule like $\rm H_2O$, $\rm CH_4$, etc., is adsorbed on a pure molecular crystal of the same material, it could migrate to a "growth edge" on the surface and become a part of the crystal. Similarly, a carbon atom adsorbed on a graphite grain could in principle find a growth edge and become chemically bound into the crystal. We disregard these possibilities for most of this paper but return to them in § IVe.

AN INTERSTELLAR GRAIN

H₂ formation in the ISM

Porous chondrite interplanetary dust particle


FORMATION OF MOLECULAR HYDROGEN ON AMORPHOUS WATER ICE: INFLUENCE OF MORPHOLOGY AND ULTRAVIOLET EXPOSURE

J. E. ROSER, ¹ G. MANICÒ, ^{1,2} V. PIRRONELLO, ² AND G. VIDALI ¹
Received 2002 April 26; accepted 2002 August 14

ABSTRACT

In this paper, we report on the formation of molecular hydrogen on different types of amorphous water ice. We show that mass spectra of desorbing molecules upon formation are sensitive to the way in which ice is deposited on a cold substrate, to its thermal history, and to the action of UV photons. Implications that these results bear on H₂ formation in dense quiescent clouds are presented and discussed.

Subject headings: astrochemistry — dust, extinction — ISM: molecules — methods: laboratory — molecular processes

H atoms are adsorbed in ice-surfaces and H₂ forms

T typical of ISM!

Fig. 3.—Recombination efficiency of molecular hydrogen vs. sample temperature of H atoms. Filled circles are for high-density amorphous ice (Manicò et al. 2001), open circles are for low-density amorphous ice prepared by heating high-density amorphous ice, and open squares are for water vapor-deposited low-density amorphous ice. The error bars are comparable to the size of the symbols. The scatter in the data points reflects the variability in the ice preparation methods.

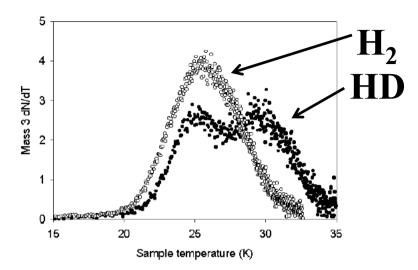


Fig. 4.—Desorption rate $(dN_{\rm HD}/dT)$ vs. ramp temperature after adsorption of H and D for 4 minutes on high-density amorphous water ice at \sim 10 K before (*filled circles*) and after (*open circles*) UV exposure for 15 minutes. Traces have been scaled to yield the same area.

H₂ in grain evaporates and leaves the surface

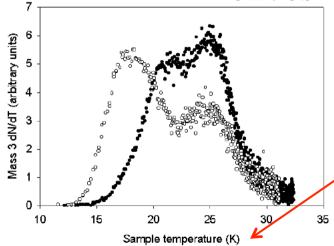


Fig. 5.—Same as in Fig. 4, except for low-density amorphous ice

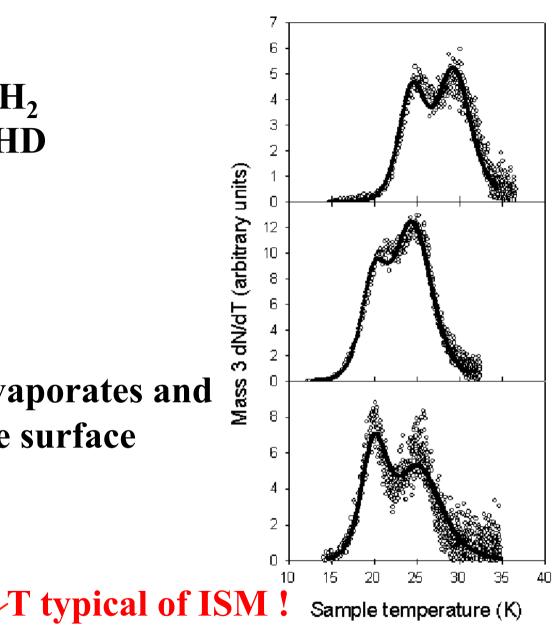
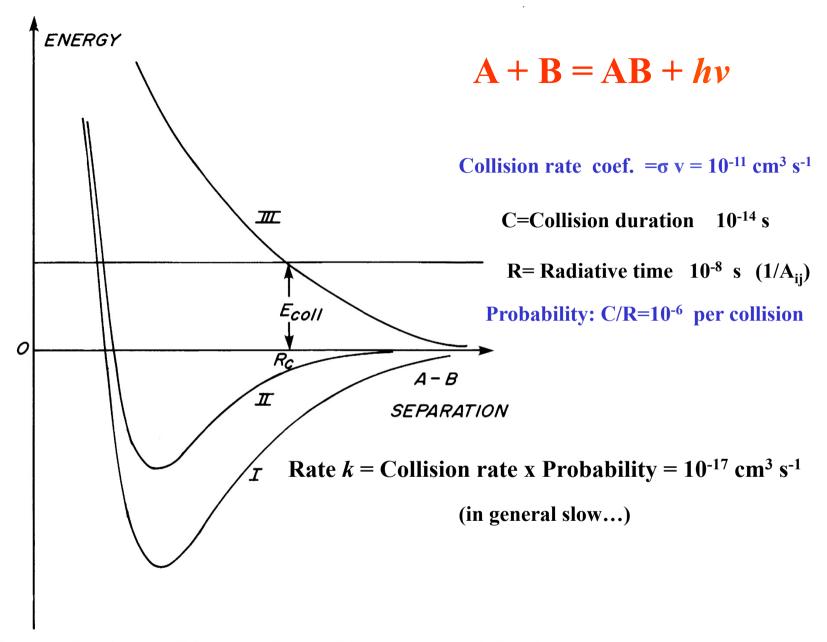


Fig. 6.—Desorption rate $(dN_{\rm HD}/dT)$ vs. ramp temperature after adsorption of H and D for 4 minutes with a sample temperature of $\sim \! 10$ K. Graphs from top to bottom are for desorptions from high-density amorphous ice, low-density amorphous ice prepared by heating a high-density amorphous ice, and water vapor—deposited low-density amorphous ice. The solid line is a fit using the method and parameters described in the text.

Some old "pionering" papers on the formation of \mathbf{H}_2 on dust grains

- * Katz et al., 1999, ApJ, 522, 305
 - Molecular Hydrogen Formation on Astrophysically Relevant Surfaces
- * Pirronello et al., 1999, A&A, 344, 681
 - Measurements of molecular hydrogen formation on carbonaceous grains
- * Takahashi et al., 1999, ApJ, 520, 724
 - Product Energy Distribution of Molecular Hydrogen Formed on Icy Mantles of Interstellar Dust
- * Takahashi et al., 1999, MNRAS, 306, 22
 - The formation mechanism of molecular hydrogen on icy mantles of interstellar dust

Let assume that H_2 has been formed on the surface of the dust grains. How do we form other molecular species?


$$H_2 + (C, C^+, O, O^+, N, Si, Si^+, S, S^+) \rightarrow ???$$

$$A + B \rightarrow AB$$
 ??

let us consider the following reaction;

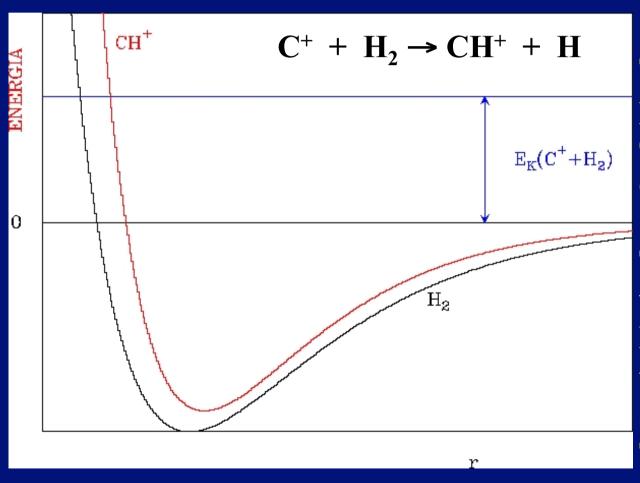
$$A + B \rightarrow AB + hv$$
 (radiative association)

is it possible? is it fast enough to be efficient in the ISM?

Fig. 3.4 A diagram showing possible types of potential energy curves belonging to the diatomic molecule AB. The colliding partners have relative kinetic energy E_{coll} .

$$H_2 + (C, C^+, O, O^+, N, Si, Si^+, S, S^+) \rightarrow ???$$

The reaction will occur if the change of energy in the reaction is positive in order to account for the low temperatures of the interstellar medium (reactions must be exothermic)


For example, let us consider the reaction

$$C^+ + H_2 \rightarrow CH^+ + H$$

Remember all reactions in ISM have to be bimolecular !! Association reactions $A + B = AB + h\nu$ are very slow !! A + B + M = AB + M only good for the Earth and AGBs

D(products) – D (reactants) >
$$0 \rightarrow \text{ exothermic}$$

< $0 \rightarrow \text{ endothermic}$

The dissociation energy of H₂ is 4.48 eV and that of CH⁺ is 4.09 eV

The reaction will be produced if we add 0.39 eV to the system (about 4000 K).

This reaction is endothermic and has little probability to occur in the ISM as we need T_{gas} =E/k > 4000 K A&A 521, L15 (2010)

DOI: 10.1051/0004-6361/201015109

© ESO 2010

Herschel/HIFI: first science highlights

Special feature

LETTER TO THE EDITOR


CH⁺(1–0) and ¹³CH⁺(1–0) absorption lines in the direction of massive star-forming regions^{*,**}

E. Falgarone¹, B. Godard^{8,1}, J. Cernicharo³, M. De Luca¹, M. Gerin¹, T. G. Phillips⁷, J. H. Black T. A. Bell⁷, F. Boulanger⁸, A. Coutens^{12,13}, E. Dartois⁸, P. Encrenaz¹, T. Giesen⁹, J. R. Goicoechea³, H. Gupta⁶, C. Gry¹⁰, P. Hennebelle¹, E. Herbst⁴, P. Hily-Blant¹¹, C. Joblin^{12,13}, M. Kaźmierczak¹ J. Krełowski¹⁵, J. Martin-Pintado³, R. Monje⁷, B. Mookerjea¹⁶, D. A. Neufeld⁵, M. Perault¹, J. C. Persson², R. Plume¹⁷, M. Salez¹, M. Schmidt¹⁵, P. Sonnentrucker⁵, J. Stutzki⁹, D. Teyssier¹⁸, C. V. K. Menten¹⁹, T. R. Geballe²⁰, S. Schlemmer⁹, R. Shipman²¹, A. G. G. M. Tielens²², S. Philipp²³, J. Zmuidzinas⁷, L. A. Samoska⁶, K. Klein²⁴, A. Lorenzani²⁵, R. Szczerba¹⁸, I. Péron^{26,1}, P. Cais², A. Cros^{12,13}, L. Ravera^{12,13}, P. Morris²⁸, S. Lord²⁸, and P. Planesas^{29,30}

(Affiliations are available on page 5 of the online edition)

Received 31 May 2010 / Accepted 19 July 2010

The reaction

$$S^+ + H_2 \rightarrow SH^+ + H$$

Has also few chances to occur in the ISM

$$D(H_2)=4.49 \text{ eV}$$
 and $D(SH^+)=3.5 \text{ eV}$

However, the reaction

$$O^+ + H_2 \rightarrow OH^+ + H$$

could occur as $D(H_2)=4.49$ eV, $D(OH^+)=5.1$ eV and it is exothermic by 0.61 eV!

$$O \xrightarrow{H^+} O^+ \xrightarrow{H_2} OH^+ \xrightarrow{H_2} H_2O^+ \xrightarrow{H_2} H_3O^+ \xrightarrow{e^-} OH, H_2O.$$

DISOCIATION ENERGIES OF A FEW MOLECULES (eV)

H_2	4.48	\mathtt{Si}_2	3.21	O ₂ +	6.66	MgO	(3.5)
CH	3.47	Mg_2	0.05	S ₂ +	5.37	SiS	6.4
NH	<3.47	H ₂ +	2.65	CN	7.80	MgS	<2.4
OH	4.39	CH ⁺	4.09	CO	11.09	CN ⁺	4.85
SH	3.60	NH ⁺	3.39	CS	7.36	CO ⁺	8.34
SiH	<3.06	OH ⁺	5.1	SiC	4.60	CS ⁺	6.38
MgH	1.34	SH ⁺	3.5	NO	6.50	NO ⁺	10.85
C_2	6.21	SiH ⁺	3.17	NS	4.80	NS ⁺	6.30
N_2	9.76	MgH ⁺	2.08	so	5.36	SO ⁺	5.43
02	5.12	C ₂ ⁺	5.32	SiO	8.26	SiO ⁺	5.0
S ₂	4.37	N_2^+	8.71				

$$O^+ + H_2 \rightarrow OH^+ + H$$

The reaction rate has been measured in the laboratory and is rather fast, $k \approx 1.6 \ 10^{-9} \ cm^3 \ s^{-1}$. But, how do we form O^+ in molecular clouds protected against the UV field?

As the ionization potentials of H and O are nearly identical, ("accidental resonance") the process of

(charge exchange) $H^+ + O \iff O^+ + H$

could occur efficiently. (H⁺ formation a few slides ahead)

Are all ion-neutral reactions fast enough?

$$A^{+} + BC \rightarrow AB^{+} + C$$

$$\rightarrow AC^{+} + B$$

$$\rightarrow AB + C^{+}$$

$$\rightarrow AC + B^{+}$$

$$\vdots? \vdots? \vdots?$$

We start studying:

$$A^+ + BC \rightarrow AB^+ + C$$

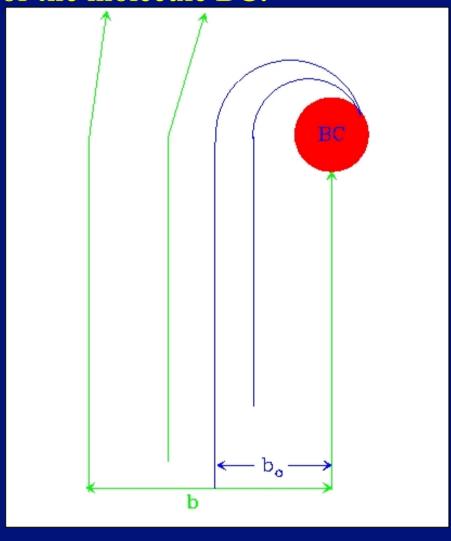
The formation rate of the product AB⁺ is given by

$$A^+ + BC \rightarrow AB^+ + C$$

formation = $k n(A+) n(BC)$

¿k [cm³ s-¹]? ¿depends on the gas temperature?

Several ion-neutral reactions have been measured in the laboratory. For most of these reactions (exothermic and BC non-polar):


k does not depend on the temperature and is of the order of 10^{-9} cm³ s-1 (high!)

Why?

Let us consider the <u>classical treatment of the collision</u> problem. Let BC is a non polar molecule.

A+ induces a dipole moment in BC during the collision process.

The interaction energy is - $2\alpha e^2/r^4$, where α is the polarizability of the molecule BC.

For impact parameters > a critical value, b_0 , although the particles interact, the particle A is only deviated from its trayectory but it is not captured by BC.

For impact parameters <b₀, A is captured by BC. b₀ is given by

$$b_0 = (4\alpha e^2 / \mu v^2)^{1/4}$$

where μ =(M_AM_{BC}/M_A+M_{BC}) and v is the relative velocity

$$A^+ + BC \rightarrow AB^+ + C$$

The energy produced in the collision could reorder the orbitals and overcome any possible activation barrier. (In the case of an impact parameter equal to b_0 the particle A remains moving around BC.)

The collisional cross section σ is πb_0^2 (area) and the reaction rate is given by

$$k = \sigma \cdot v = \pi b_0^2 v = ... = 2 \pi e (\alpha/\mu)^{1/2}$$
 [cm³ s⁻¹]

and <u>does not depend on T</u>, only on the polarizability and on the reduced mass of the system !!!

This reaction rate is known as "The Langevin rate"

POLARIZABILITY OF ATOMS AND MOLECULES (10⁻²⁴ cm³)

H	0.67	H ₂	0.79	H ₂ O	1.40	C_2H_2	3.33
He	0.20	N_2	1.76	CO ₂	2.65	NH ₃	2.26
N	1.13	02	1.58	SO ₂	4.27	CH ₄	2.60
0	0.77	CO	1.95	ocs	5.20	C_2H_6	4.47
Na	24.75	CN	2.59	HNC	2.46		
K	42.40			HCN	2.59		

 α varies very little and the reaction rate could

be very similar for all the reactions !!

Example:

$$O^+ + H_2 \rightarrow OH^+ + H$$

Langevin value 1.6·10⁻⁹ cm³s⁻¹ Experimental value 1-2·10⁻⁹ cm³s⁻¹

The other reaction "channel":

$$O^+ + H_2 \rightarrow OH + H^+$$

is slightly endothermic

$$D(H_2)=4.48 \text{ eV}$$
 y $D(OH)=4.39 \text{ eV}$

and thus less probable than the OH⁺ formation

However, this <u>simple theory</u> does not always work (as expected ...)

$$Ne^+ + O_2 \rightarrow O^+ + O + Ne$$

(highly exothermic)
Langevin value (approx)

0.9 10⁻⁹ cm³ s⁻¹

Experimetal value (real)

0.06 10⁻⁹ cm³ s⁻¹

Or

$$He^+ + H_2 \rightarrow H^+ + H + He$$

Langevin value (approx) 1.8 10⁻⁹ cm³ s⁻¹ Experimetal value (real) 1.0 10⁻¹³ cm³ s⁻¹ !!!

The following reactions

$$Ne^{+} + O_{2} \rightarrow O_{2}^{+} + Ne$$
 $(Ne^{+} + O_{2} \rightarrow O^{+} + O + Ne)$
 $He^{+} + H_{2} \rightarrow H_{2}^{+} + He$ $(He^{+} + H_{2} \rightarrow H^{+} + H + He)$

Are much faster (charge exchanges)!

$$A^+ + BC \rightarrow AB^+ + C$$

What happens in ion-neutral reactions if the BC molecule is polar?

A classical treatment of the problem (ADO = Averaged Dipole Orientations) of the dipole interaction

$$k_{\rm ADO} = 2 \pi e (\alpha^{1/2} + c \mu_{\rm D} (2/\pi kT)^{1/2})$$

Where μ_D is the dipole moment of the molecule, T is the gas temperature and c is a function of $\mu_D/$ $\alpha^{1/2}$

4. 5.	$H_2^+ + H_2 \rightarrow H_3^+ + H$ $CO^+ + H_2 \rightarrow HCO^+ + H$	2.1 2.0
6.	$N_2^+ + H_2 \rightarrow HN_2^+ + H$	1.7
7. 8.	$He^+ + H_2 \rightarrow products$	< 10-4
9.	$O^{+} + H_{2} \rightarrow OH^{+} + H$	2.0 0.7
10.	$OH^+ + H_2 \rightarrow OH_2^+ + H$	1.5
11.	$NH^+ + H_2 \rightarrow NH_2^+ + H$	0.6
12.	$OH_2^+ + H_2 \rightarrow OH_3^+ + H$	1.4
13.	$NH_2^+ + H_2 \rightarrow NH_3^+ + H$	0.23
14.	$NH_3^+ + H_2 \rightarrow NH_4^+ + H$	$< 5 \times 10^{-4}$
15.	$CH^{+} + H_{2} \rightarrow CH_{2}^{+} + H_{}$	10-2
16.	$CH_2^+ + H_2 \rightarrow CH_3^+ + H$	10-2
17.	$HCN^+ + H_2 \rightarrow H_2CN^+ + H$	2.0
18.	$He^+ + CO \rightarrow C^+ + O + He.$	2.0
19.	$He^+ + N_2 \rightarrow N^+ + N + He \dots$	0.72
20. 21.	$\rightarrow N_2^+ + He$	0.48
22.	$He^+ + O_2 \rightarrow O^+ + O + He.$ $\rightarrow O_2^+ + He.$	0.62 0.38
23.	$He^+ + CN \rightarrow C^+ + N + He$	2.0
24.	$H_3^+ + O \rightarrow OH^+ + H_2 \dots$	2.0
25.	$H_3^+ + C \rightarrow CH^+ + H_2$	2.0
26.	$H_3^+ + CO \rightarrow HCO^+ + H_2$	1.4
27.	$H_3^+ + N_2 \rightarrow HN_2^+ + H_2$	
28.	$H_3^+ + OH \rightarrow H_2O^+ + H_2$	2.0
29.	$H_3^+ + CN \rightarrow HCN^+ + H_2 \dots \dots$	2.0
30.	$H_3^+ + H_2O \rightarrow H_3O^+ + H_2$	3.0
31.	$H_3^+ + CO_2 \rightarrow HCO_2^+ + H_2$	1.9
32.	$H_3^+ + NH_3 \rightarrow NH_4^+ + H_2$	3.6
33.	$H_3^+ + HCN \rightarrow H_2CN^+ + H_2$	2.0
34. 35.	$H_3^+ + H_2CO \rightarrow H_3CO^+ + H_2 \dots \dots \dots$	2.0 1.0
36.	$HCO^+ + OH \rightarrow HCO_2^+ + H$ $HCO^+ + H_2O \rightarrow H_3O^+ + CO$	0.5
50.	TICO T 1120 T 1130 T CO	0.5

Which are the key processes in ISM chemistry?

- 1) H₂ is formed in dust grain surfaces
- 2) We need atomic or molecular ions (ok for diffuse ISM)

But, how are molecules ionized inside molecular clouds?

With cosmic rays !!! (e.j. high speed p⁺, He nuc... with E~1000 MeV)

$$CR + H \rightarrow H^{+} + CR$$
 $CR + He \rightarrow He^{+} + CR$
 $CR + H_{2} \rightarrow H_{2}^{+} + CR$ (unimolecular $H_{2} + H_{2}^{+} \rightarrow H_{3}^{+} + H$ reaction)

and H_3^+ a key molecule !!!! Formation rate = $\zeta_{CR} n(H_2)$ with $\zeta_{CR} \approx 10^{-16}$ - 10^{-17} s⁻¹ "CR ionization rate"

 ${\rm H_3}^+$ does not react with ${\rm H_2}$ He⁺ does not react with ${\rm H_2}$, ionization source for other species

THE FORMATION AND DEPLETION OF MOLECULES IN DENSE INTERSTELLAR CLOUDS*

ERIC HERBST† AND WILLIAM KLEMPERER

THE ASTROPHYSICAL JOURNAL, 185:505-533, 1973 October 15

Ionization is produced in dense clouds by cosmic rays sufficiently energetic to penetrate the interior. Since H_2 and H_2 are the dominant species, the major initial ions produced are H_2^+ , H_2^+ (Solomon and Werner 1971), and H_2^+ . The exothermic reaction $H_2^+ + H_2 \rightarrow H_3^+ + H$ is rapid (Bowers, Elleman, and King 1969), but the highly exothermic reaction of H_2^+ with H_2 does not occur for kinetic reasons (Fehsenfeld *et al.* 1966b). Thus H_2^+ , unlike H_2^+ , will exist in appreciable concentration. Having an electron affinity of 24 eV, H_2^+ ionizes most neutral species other than H_2 rapidly. The reactions of the primal ions— H_2^+ , H_3^+ , H_2^+ —with abundant neutral species such as CO, O, N, O_2 , and O_2 produce secondary ions such as O_2^+ , O_2^+ ,

$$CR + H_2 \rightarrow H_2^+ + e^- + CR$$
 (2%)
 $CR + H_2 \rightarrow H + H^+ + e^- + CR$ (88%)
 $CR + H_2 \rightarrow H + H + CR$ (10%)

520

OBSERVATIONS OF H; IN THE DIFFUSE INTERSTELLAR MEDIUM

B. J. McCall, 1,2 K. H. Hinkle, 3 T. R. Geballe, 4 G. H. Moriarty-Schieven, 5 N. J. Evans II, 6 K. Kawaguchi, 7 S. Takano, 8 V. V. Smith, 9 and T. Oka 1

Received 2001 June 5; accepted 2001 October 30

ABSTRACT

Surprisingly large column densities of H_3^+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sight lines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H_3^+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H_3^+ column densities imply unreasonably long path lengths ($\sim 1~\rm kpc$) and low densities ($\sim 3~\rm cm^{-3}$). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H_3^+ must be increased by 1–2 orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H_2 ionization, and/or a smaller value of the H_3^+ dissociative recombination rate constant than implied by laboratory experiments.

Subject headings: cosmic rays — infrared: ISM: lines and bands — ISM: clouds — ISM: molecules — molecular processes

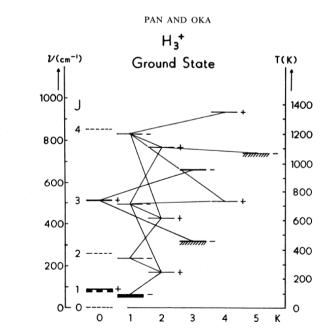


Fig. 1.—Rotational energy levels of \mathbb{H}_3^+ in the ground vibrational state. Three types of "stable" levels are indicated; the lowest (J=1,K=1) level by a bold line, the (J=1,K=0) level which is metastable both collisionally) and radiatively by a broken bold line, and the (J=5,K=5) and (J=3,K=3) levels which are metastable for radiative transitions by shadowed lines. The forbidden rotational transitions are shown by lines connecting levels.

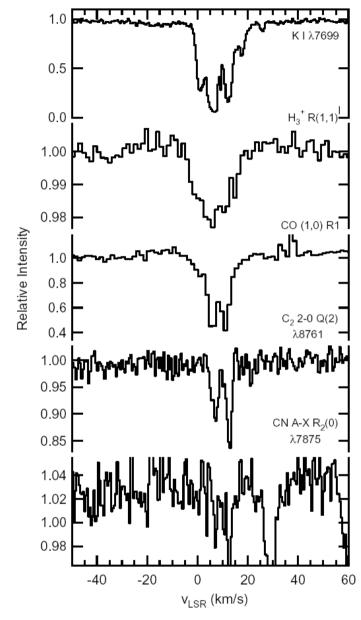


Fig. 13.—Summary of spectra of Cygnus OB2 12, in velocity space. The structure near 30 and 60 km s $^{-1}$ in the lower trace is due to atmospheric lines.

FAR-INFRARED DETECTION OF H₂D⁺ TOWARD SGR B2¹

J. Cernicharo

Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura de la Materia, Madrid, Spain

E. POLEHAMPTON²

Department of Space Science and Technology, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, UK

AND

J. R. GOICOECHEA

LERMA-LRA, Observatoire de Paris et École Normale Supérieure, Paris, France Received 2006 December 14; accepted 2007 January 18; published 2007 February 5

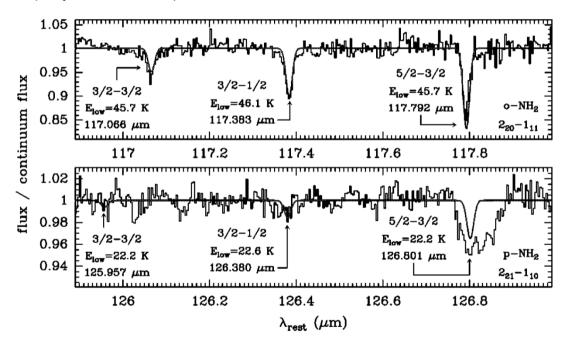


FIG. 2.—Rest *ISO* LWS/FP spectrum of Sgr B2 around 117 and 126 μ m, corrected by the averaged velocity of far-IR lines toward the source (62.7 km s⁻¹). Lines due to o-NH₂ (*top panel*) and p-NH₂ plus o-H₂D⁺ (*bottom panel*) are shown. The expected absorption for the NH₂ lines is shown by solid lines in both panels (see text). An NH₂ ortho/para ratio of 3 has been assumed. Note that the NH₂ lines show absorption only at the velocity of Sgr B2. [*See the electronic edition of the Journal for a color version of this figure*.]

What kind of ion-neutral could occur in the ISM?

PROTON TRANSFER

$$AH^+ + B \rightarrow BH^+ + A$$

The reaction is efficient if it is exothermic and it will depend on the proton affinity of the reactants.

H₂ has a low proton affinity and the reactions of H₃⁺ with neutral species (B) will always produce BH⁺

$$H_3^+ + B \rightarrow BH^+ + H_2$$

If the reaction is exothermic the main channel for the reaction is the proton transfer.

PROTON AFFINITIES

H	2.69	02	4.34
H_2	4.34	CO	6.20
He	1.82	NO	4.99
0	5.03	C ₂	7.20
C	6.46	CN	4.99
N	4.21	N_2	5.03
		CS	7.57

TABLE 1 Cosmic Abundances

Element	Relative Abundance (by number)*		
H	$ \begin{array}{c} 1\\ 0.14\dagger\\ 3.75 \times 10^{-4}\\ 8.7 \times 10^{-5}\\ 4.4 \times 10^{-4}\\ 2.6 \times 10^{-5}\\ 3.2 \times 10^{-5}\\ 1.4 \times 10^{-5}\\ 3.2 \times 10^{-5} \end{array} $		

H₃⁺ will transfer protons to all atoms (except N, H y He) and

to most molecules

$$n(\mathrm{H}_3^{+})_{\mathrm{dense}} \approx (\zeta/k_{\mathrm{CO}})[n(\mathrm{H}_2)/n(\mathrm{CO})]$$

and

$$n(\mathrm{H}_3^{\dagger})_{\mathrm{diffuse}} \approx (\zeta/k_{\mathrm{e}})[n(\mathrm{H}_2)/n(\mathrm{e}^-)].$$

ABSTRACTION OF THE HYDROGEN ATOM

$$A^+ + H_2 \rightarrow AH^+ + H$$

Classic theory does not work well in this case and the reaction rates are poorly determined. In addition, these reactions have often activation energy barriers. Some of them have been studied in the Lab and could be important paths to formation of ionized molecular species

$O^+ + H_2 \rightarrow OH^+ + H$,
$OH^+ + H_2 \rightarrow OH_2^+ + H$,
$OH_2^+ + H_2 \rightarrow OH_3^+ + H$,
$N^+ + H_2 \rightarrow NH^+ + H$,
$NH^+ + H_2 \rightarrow NH_2^+ + H$,
$NH_2^+ + H_2 \rightarrow NH_3^+ + H$.

$O^+ + H_2 \rightarrow OH^+ + H \dots$	2.0
$N^+ + H_2 \rightarrow NH^+ + H$	0.7
$OH^+ + H_2 \rightarrow OH_2^+ + H$	1.5
$NH^+ + H_2 \rightarrow NH_2^+ + H$	
$OH_2^+ + H_2 \rightarrow OH_3^+ + H_{}$	
$NH_2^+ + H_2 \rightarrow NH_3^+ + H \dots$	
$NH_3^+ + H_2 \rightarrow NH_4^+ + H \dots$	

PROTON ELIMINATION

$$A^+ + BH \rightarrow AB + H^+$$

Not very efficient although some of them could be important in the ISM:

$$C^+ + NH \rightarrow CN + H^+$$

$$C^+ + NH_2 \rightarrow HCN + H^+$$

CONDENSATION REACTIONS

New bonds between heavy atoms are created

$$CH_3^+ + NH_3 \rightarrow CH_2NH_2^+ + H_2$$

And they occur often through the removal of H o H_2 . They often have very efficient alternative channels

$$CH_3^+ + NH_3 \rightarrow CH_2 + NH_4^+$$

(proton transfer)

CHARGE TRANSFER REACTIONS

They are the KEY reactions for the chemistry of the ISM

$$A^+ + B \rightarrow B^+ + A$$

Example

$$H^+ + O \rightarrow O^+ + H$$
 (has a small E_a)

The reactions

$$A^{++} + B \rightarrow A^{+} + B^{+}$$

could be important in HII regions with high ionization fractions but not in molecular clouds.

ERIC HERBST AND WILLIAM KLEMPERER

TABLE 4
CHARGE-TRANSFER REACTIONS

Reaction	k(10 ⁻⁹ cm ³ s ⁻¹)
57. $H^{+} + NO \rightarrow NO^{+} + H$. 58. $H^{+} + O_{2} \rightarrow O_{2}^{+} + H$. 59. $H^{+} + OH \rightarrow OH^{+} + H$. 60. $H^{+} + H_{2}O \rightarrow H_{2}O^{+} + H$. 61. $H^{+} + NH_{3} \rightarrow NH_{3}^{+} + H$. 62. $H^{+} + H_{2}CO \rightarrow H_{2}CO^{+} + H$. 63. $C^{+} + NO \rightarrow NO^{+} + C$. 64. $C + O_{2}^{+} \rightarrow C^{+} + O_{2}$.	1.9 1.0 1.2 1.0 8.2 1.0 5.2 1.0 0.85 1.0

Values in red have been measured in the laboratory

RADIATIVE RECOMBINATION

$$X^+ + e^- \rightarrow X + hv$$
 (reverse of photoionization)

These mechanisms produce neutral species from a chemistry based on ion-neutral reactions.

In this reaction the energy excess of the system is released as radiation.

e.g. (deep in molecular clouds) $Fe^+ + e^- \rightarrow Fe + hv$

Typical reaction rates are slow $k_{RR} \approx 10^{-12} \text{ cm}^3 \text{ s}^{-1}$

Molecular ions recombine much faster through other mechanism...

DISSOCIATIVE RECOMBINATION

Molecular positive ions recombine with electrons to dissociate into neutral species (not by radiating a photon)

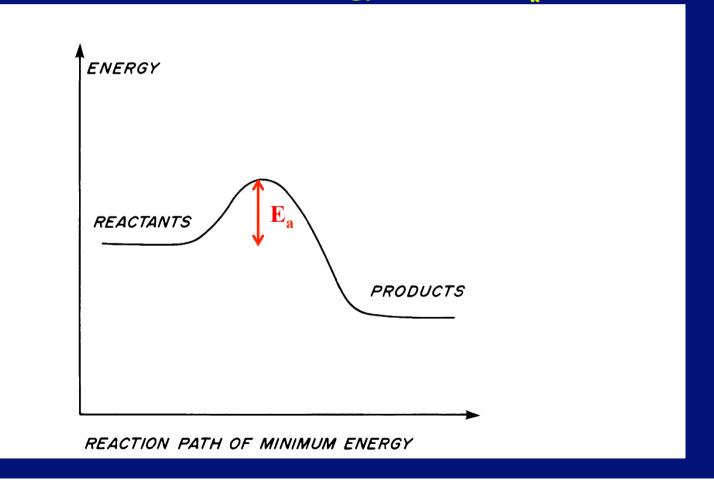
$$ABC^+ + e^- \rightarrow BC + A$$

Besides, the reaction rates have a T dependency as T-1/2!

Typical values for the dissociative recombination rate are $k_{DR} \approx 10^{-6}$ - 10^{-7} cm³ s⁻¹ (fast)

e.g. (in molecular clouds) $HCO^+ + e^- \rightarrow CO + H$

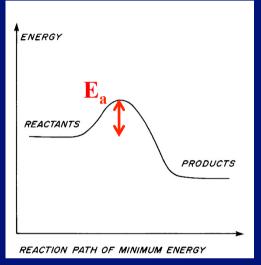
Hence, these reactions are very important in ISM.


Table 3.8 Some measured values of k_{DR} .

	Rate coeffici	ent $(cm^3 s^{-1})$		Rate coeffici	ent $(cm^3 s^{-1})$
Species	100 K	40 K	Species	100 K	40 K
Diatomics			Polyatomics		
CH+	3.3×10^{-7}	5.2×10^{-7}	H_3^+	7.2×10^{-7}	1.1×10^{-6}
NH+	1.9×10^{-7}	3.0×10^{-7}	H_2O^+	1.3×10^{-6}	2.1×10^{-6}
OH+	1.4×10^{-7}	2.2×10^{-7}	H_3O^+	1.1×10^{-6}	1.7×10^{-6}
C_2^+	1.0×10^{-6}	1.6×10^{-6}	$\mathrm{CH_2}^+$	8.7×10^{-7}	1.4×10^{-6}
N_2^+	6.2×10^{-7}	9.8×10^{-7}	CH_3^-	1.2×10^{-6}	1.9×10^{-6}
O_2^{+}	3.3×10^{-7}	5.2×10^{-7}	CH_4^+	1.3×10^{-6}	2.1×10^{-6}
NO+	4.1×10^{-7}	6.5×10^{-7}	CH_5^+	1.3×10^{-6}	2.1×10^{-6}
			C_2H^+	1.0×10^{-6}	1.6×10^{-6}
			$C_{2}H_{2}^{+}$	1.0×10^{-6}	1.6×10^{-6}
			$C_{2}H_{3}^{2}$ +	1.6×10^{-6}	2.5×10^{-6}
			N_2H^+	1.5×10^{-6}	2.4×10^{-6}

NEUTRAL-NEUTRAL REACTIONS

$$A + BC = AB + C$$


Strong temperature dependence has been found for many of these reactions + activation energy barriers E_a


$k(T)=A(T) \exp(-E_a/kT)$

	A(cm ³ s ⁻¹)	$\mathbf{E}_{\mathbf{a}}(\mathbf{K})$
$H + H_2CO = H_2 + HCO$	$2.7 10^{-11}$	1300
$H + H_2S = H_2 + SH$	1.3 10 ⁻¹¹	860
$H + O_2 = OH + O$	$3.7 10^{-10}$	8500
$O + H_2 = OH + H$	$1.0 \ 10^{-11}$	5700
$O + H_2S = OH + SH$	$6.6 \ 10^{-13}$	900
$OH + CO = H + CO_2$	$5.1 \ 10^{-13}$	300

Non-thermal reactions may overcome endothermicities or activation energy barriers $\mathbf{E}_{\mathbf{a}}$

 $H_2 + C^+ \rightarrow CH^+ + H$ (endothermic by 0.37 eV or 4300 K)

The H_2 (v=1) level has an energy of ~0.5 eV (~5800 K)

- In some particular cases the ${\rm H_2}^*$ levels can be significantly populated e.g. by absorption of UV photons in Photodissociation Regions.

Non-thermal reactions may overcome endothermicities or activation energy barriers E_a

THE ASTROPHYSICAL JOURNAL, 713:662–670, 2010 April 10

© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/713/1/662

THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM

M. Agúndez¹, J. R. Goicoechea², J. Cernicharo², A. Faure³, and E. Roueff¹

¹ LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon, France; marcelino.agundez@obspm.fr, evelyne.roueff@obspm.fr

Received 2010 January 15: accepted 2010 March 5: published 2010 March 24

Table 1

Thermal and State-specific Rate Constants for Chemical Reactions of H₂ Relevant for Astrophysics

No.	Reaction	$k \text{ (cm}^3 \text{ s}^{-1})$	$\Delta T (\mathbf{K})^{\mathbf{a}}$	$\Delta H_r^0(0K)$ (K)	Reference
1	$H_2 + C^+ \rightarrow CH^+ + H$	$7.4 \times 10^{-10} \exp(-4537/T)$	400-1300	+4280	(1)
2	$H_2(j = 0, 7) + C^+ \rightarrow CH^+ + H$	$1.58 \times 10^{-10} \exp(-[4827 - E_j/k]/T)^b$	200-1000	(+4280, -310)	(2)
3	$H_2(v = 1) + C^+ \rightarrow CH^+ + H$	1.6×10^{-9}	800-1300	-1710	(1)
4	$H_2 + He^+ \rightarrow He + H + H^+$	$3.7 \times 10^{-14} \exp(-35/T)$	10-300	-75560	(3)
5	$H_2(v > 1) + He^+ \rightarrow He + H + H^+$	$0.18-1.8 \times 10^{-9}$	300	-87190	(4)
11	$H_2 + O \rightarrow OH + H$	$3.52 \times 10^{-13} (T/300)^{2.60} \exp(-3241/T)$	297–3532	+920	(5)
6	$H_2(v = 1) + O \rightarrow OH + H$	$1.68 \times 10^{-16} (T/300)^{9.34} \exp(943/T)$	100-500 ^c	-5070	(6)
7	$H_2(v = 2) + O \rightarrow OH + H$	$1.52 \times 10^{-13} (T/300)^{5.13} \exp(209/T)$	100-500 ^c	-10720	(6)
8	$H_2(v=3) + O \rightarrow OH + H$	$2.07 \times 10^{-11} (T/300)^{0.98} \exp(-412/T)$	100-4000	-16040	(6)
9	$H_2 + OH \rightarrow H_2O + H$	$2.22 \times 10^{-12} (T/300)^{1.43} \exp(-1751/T)$	200-3000	-7370	(5)
10	$H_2(v = 1) + OH \rightarrow H_2O + H$	$1.52 \times 10^{-11} \ (T/300)^{1.33} \exp(-902/T)$	250-2000	-13360	(7)
11	$H_2 + CN \rightarrow HCN + H$	$1.17 \times 10^{-12} (T/300)^{2.31} \exp(-1188/T)$	200-3500	-10250	(5)
12	$H_2(v = 1) + CN \rightarrow HCN + H$	$9.65 \times 10^{-12} (T/300)^{1.04} \exp(-1397/T)$	200-1000	-16240	(8)

² Departamento de Astrofísica, Centro de Astrobiología, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain; jr.goicoechea@cab.inta-csic.es, jcernicharo@cab.inta-csic.es

³ Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier, UMR 5571 CNRS, BP 53, 38041 Grenoble cedex 09, France; afaure@obs.uif-grenoble.fr

(UV) Photodissociation and photoionization

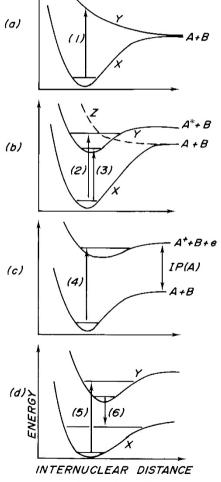
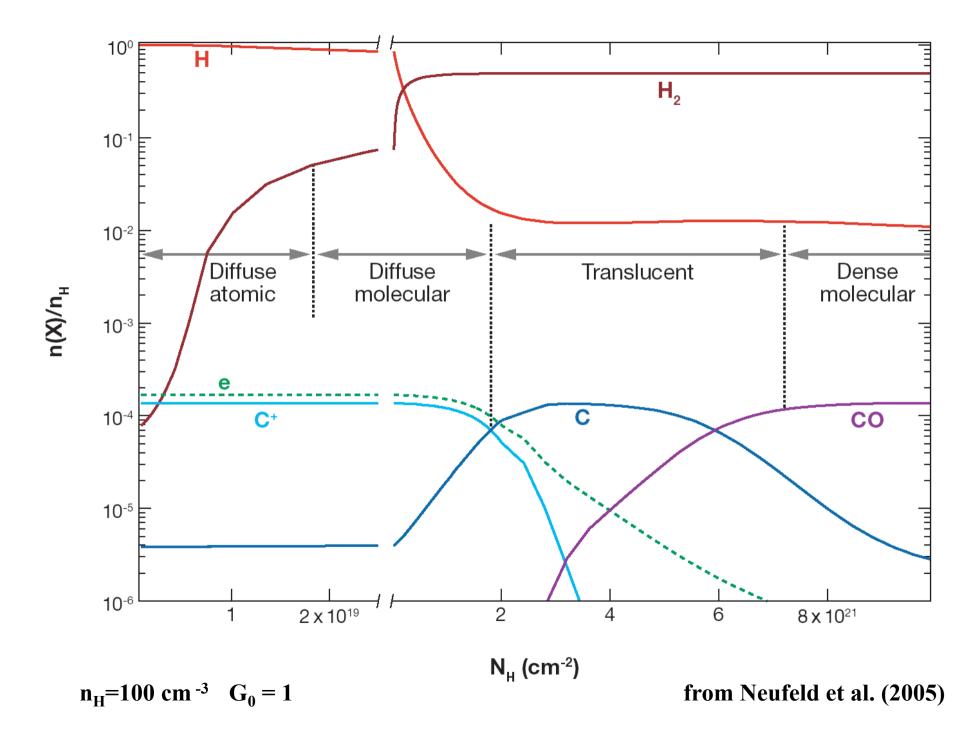
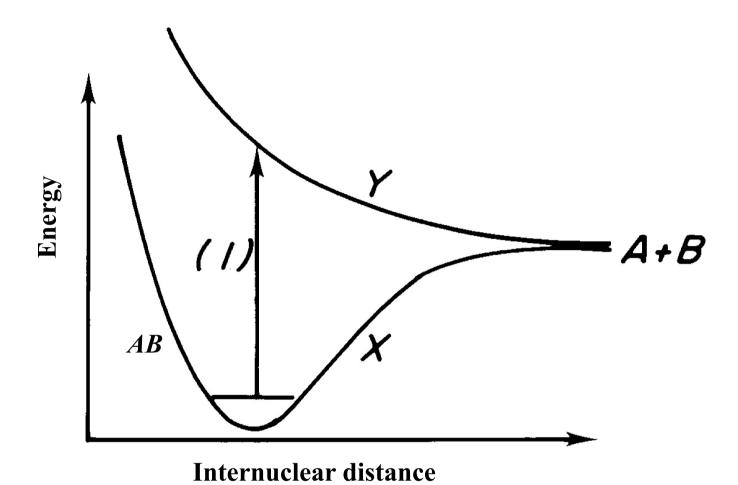
The main path to destroy molecules in UV illuminated gas is

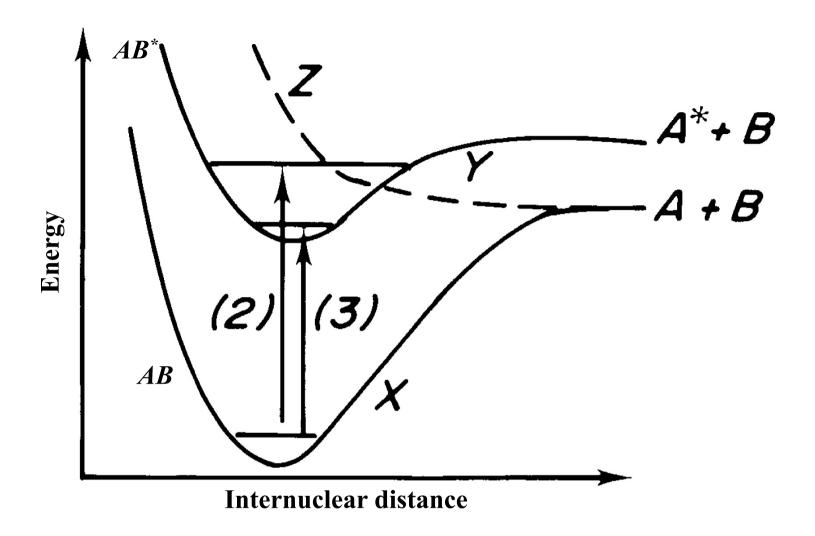
photodissociation and photoionization

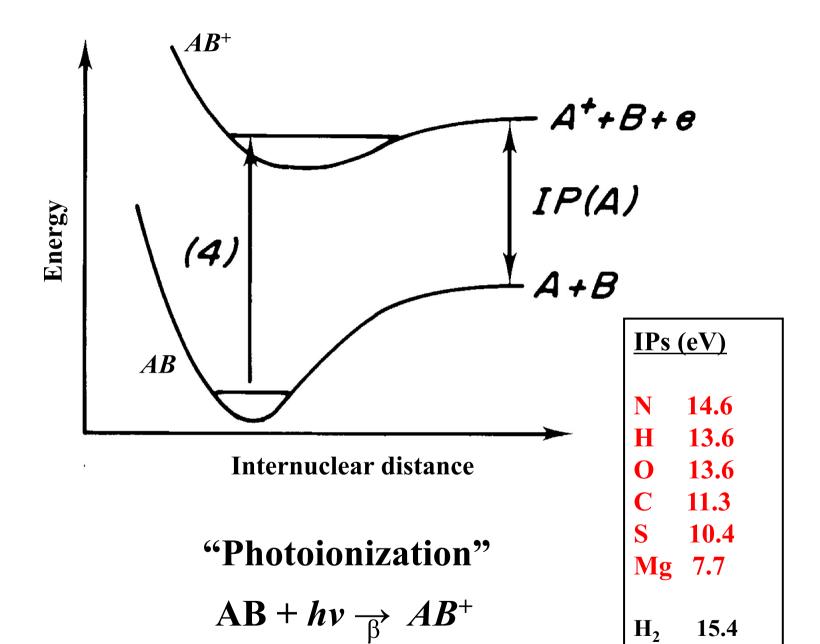
What do we need to know?

- 1) The electronic, vibrational and rotational levels of each molecule
- 2) The far-UV radiation field (>911 A)

Hence, photo rates (β) will be different in each source (SFRs, planetary disks...)


Fig. 4.1 Potential energy curves and transitions illustrating (a) photodissociation, (b) photo-predissociation, (c) photoionization, and (d) dissociation via fluorescent emission.

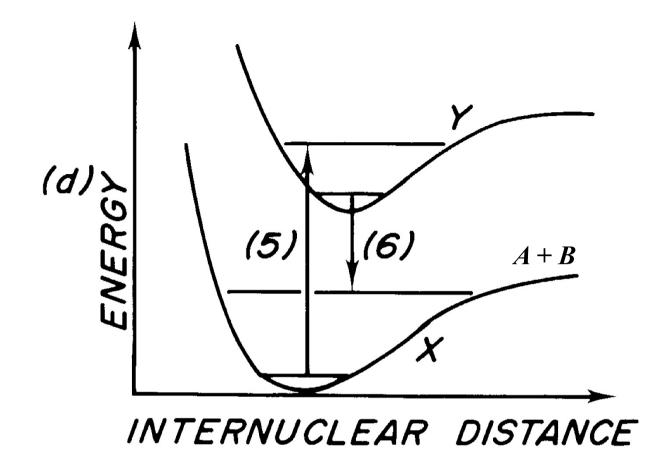

"Direct Photodissociation"

$$\mathbf{AB} + hv \xrightarrow{\beta} A + B$$

"Photo-Predisociation"

$$AB + hv \xrightarrow{\beta} AB^* \longrightarrow A + B$$

15.4


14.0

12.6

 H_2

 \mathbf{CO}

 H_2O

"Dissociation via fluorescent emission"

$$AB + hv \rightarrow A + B$$

Interstellar radiation far-UV field F=F(λ) or F=F(E)

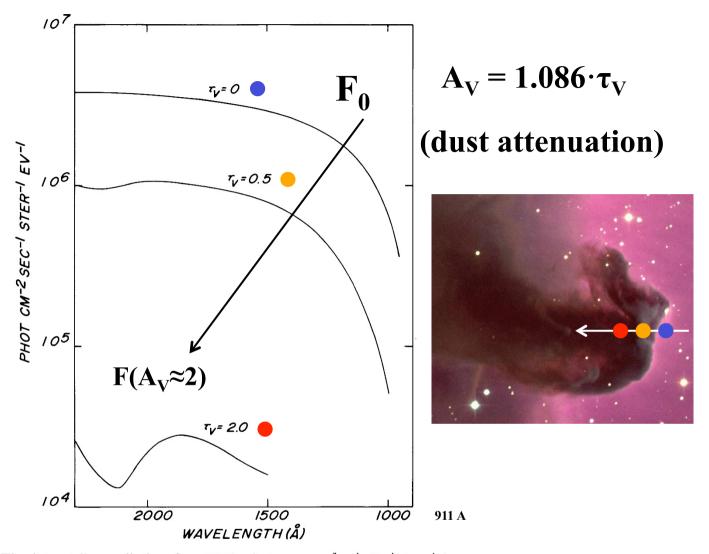


Fig. 4.4 The interstellar radiation flux F(E) photons cm⁻² s⁻¹ eV⁻¹ ster⁻¹ in unobscured regions of the interstellar medium, in a typical diffuse cloud with $\tau_v \approx 0.5$, and in a denser cloud with $\tau_v \approx 2$.

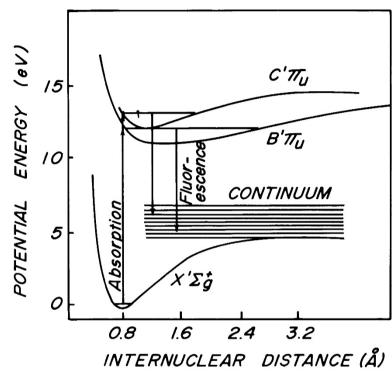
Mean interstellar radiation field flux, F(E)

 F_0 (E) = 1.658 10⁶ E - 2.152 10⁵ E² + 6.919 10³ E³ photons cm⁻² s⁻¹ ster⁻¹ eV⁻¹

$$H_2(X^1\Sigma_g^+, v^{"}=0)+hv \rightarrow H_2(B^1\Sigma_u^+, v^{'}) \quad \lambda < 1109A$$

 $\rightarrow H_2(C^1\Pi, v^{'}) \quad \lambda < 1109A$

H₂ photodissociation


"Lyman and Werner bands"

There are not allowed electric dipole transitions from $X^1\Sigma_g^+$ to repulsive Electronic states with energies <13.6 eV !!

$$H_2(B^1\Sigma_u^+, v^*) \rightarrow H_2(B^1\Sigma_g^+, v^{**}) + hv$$

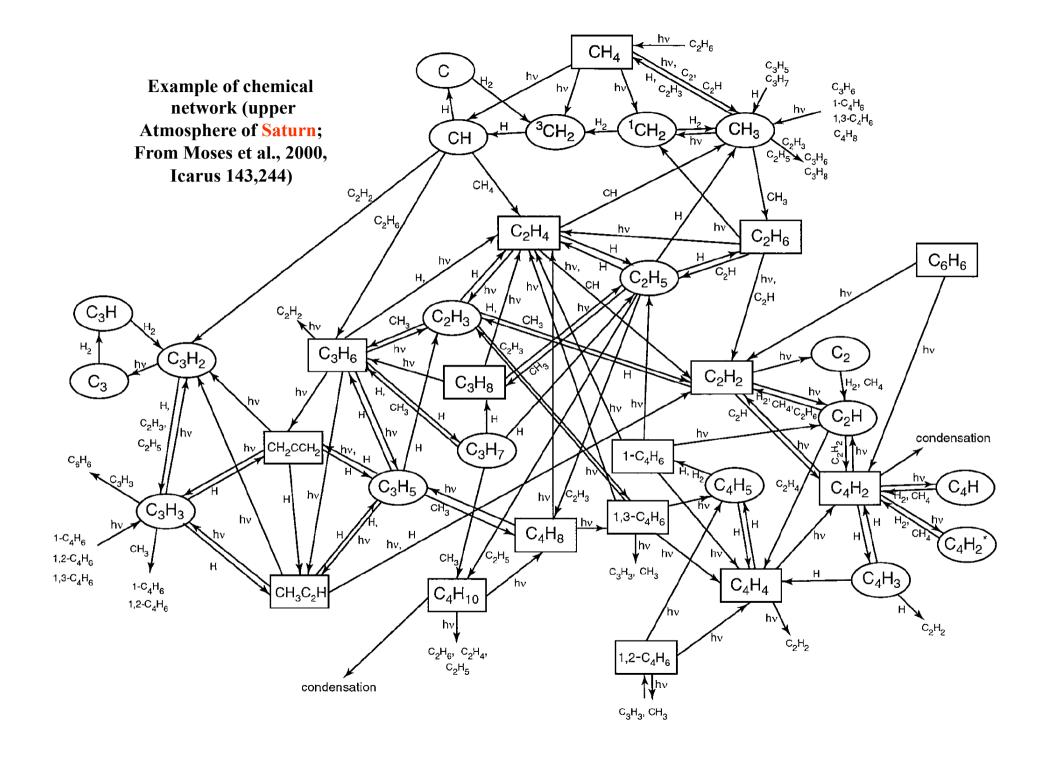
 $\rightarrow H + H + hv$

and

$$H_2(B^1\Pi_u^+, v') \rightarrow H_2(B^1\Sigma_g^+, v'') + hv$$

 $\rightarrow H + H + hv$

Fig. 4.6 Energy levels in H₂ molecule participating in absorption and dissociation via fluorescent emission. (The designation of molecular states follows G. Herzberg, *Spectra of Diatomic Molecules*, Van Nostrand, Princeton, NJ, 1950.)


23% of the X-B transitions produce photodissociation 1% of the X-C transitions produce photodissociation

Photodissociation is produced by lines $!!! \Rightarrow$ shelf-shielding of H_2 (and CO) in clouds...

Summary

REPRESENTATIVE RATES FOR DIFFERENT TYPES OF GAS REACTIONS IN THE ISM

Cosmic ray ionization	$\zeta_{ m CR}$	10^{-17} s^{-1}
Ion-Molecule reaction	k	$10^{-09} \text{ cm}^3 \text{ s}^{-1}$
Charge Transfer reacti	on k	10^{-09} cm ³ s ⁻¹
Radiative association	-diatomic	10^{-17} cm ³ s ⁻¹
	-polyatomic	10^{-09} cm ³ s ⁻¹
Neutral exchange	k , E_a	$10^{-12} \text{ cm}^3 \text{ s}^{-1}$
Radiative recombination	k_{RR}	$10^{-12} \text{ cm}^3 \text{ s}^{-1}$
Dissociative recombination	DI	$10^{-06} \text{ cm}^3 \text{ s}^{-1}$

